

174

Chapter 4. Development on ABAP and

JAVA Stacks

Development on ABAP and JAVA Stacks

 175

SAP PI is based on both ABAP and JAVA stacks, and this chapter

concentrates on development done on both stacks in both languages –

ABAP and JAVA. This is one of the reasons why every SAP Process

Integration developer needs to know how to work with both languages.

The best way to become familiarized with ABAP and JAVA development for

SAP PI is to review real life scenarios that require related knowledge; for

example, implementing data type enhancements, ABAP proxies with

attachments handling PDF and excel files – all of which are discussed in

this chapter.

4.1 Trouble writing out PDF files using the File

adapter?

Introduction

This article will discuss various options in SAP NetWeaver PI to create PDF

file output. The reader will be introduced to a simple and easy to use API

for creating PDF outputs which can be used in a module in a real time

integration scenario.

Article

Creating a PDF output. What are the options?

1) Conversion Agent - Capable of literally taking in any kind of data and

transforming out into any data, but comes with a license cost.

2) Using XSL-FOP and the Apache FOP in a XSLT mapping.

3) Use of Java proxies and executing scripts – may be complex to write.

Even though we have these options available, we recommend the use of a

very simple to use free JAVA library called iText.

Chapter 4

176

Let’s assume a typical scenario. There are a number of employee details

that need to be written in PDF format. We need to utilize tables and

include some simple formatting, such as colors and alignment.

The simplest design proposed is to have the mapping done, create the

target XML with the employee details and then pass this to the Adapter

(FILE/MAIL etc). Then use the MessageTransformBean and convert the

XML to a FLAT format. Thereafter, insert the custom module with the code

to create the PDF. The advantage here is that the input stream is in a flat

string and it is very easy to do string manipulations.

If the MessageTransformBean is not used then the target XML in the

module will be as input, then parse the content and build the PDF file

using the iText library.

So to summarize, the message flow proposed is:

Target XML -> Adapter -> MessageTransformBean -> Our Custom Module

Below is a sample java class that is intended to help the reader

understand the use of the iText library. The code can be used as a

reference while building the EJB project for the module.

Assumptions

1) MessageTransformBean converts the target XML to a FLAT format.

The field separator is comma and the end of each record can be

identified by the string literal 'END'.

2) The iText library is downloaded and imported for the project.

Development on ABAP and JAVA Stacks

 177

e.g. Input format:

100,Anakin Skywalker,EAS,ConsultantEND200,Darth Vader,Java,Sr.

ProgrammerEND300,Obi-Wan Kenobi,MSTechmologies,Project

ManagerEND

There are 3 records and 4 fields per record.

The output PDF will have a table which will include a Main Header,

followed by the header for each column of the data, followed by the data

itself.

/*

 This is a java class to create a PDF document out of a given string

 Created By Shabarish Vijayakumar

 */

import java.awt.Color;

import java.io.FileOutputStream;

import java.io.IOException;

import com.lowagie.text.Document;

import com.lowagie.text.DocumentException;

import com.lowagie.text.Element;

import com.lowagie.text.Paragraph;

import com.lowagie.text.pdf.PdfPCell;

import com.lowagie.text.pdf.PdfPTable;

import com.lowagie.text.pdf.PdfWriter;

public class createPDF {

Chapter 4

178

 public static void main(String[] args) {

 // Assume the below is the input file format

 String input =

 "100,Anakin Skywalker,EAS,ConsultantEND200,Darth

Vader,Java,Sr. ProgrammerEND300,Obi-Wan

Kenobi,MSTechnologies,Project ManagerEND";

 // creation of a document-object

 Document document = new Document();

 try {

 // create a writer

 PdfWriter.getInstance(

 // that listens to the document

 document,

 // and directs a PDF-stream to a file

 new FileOutputStream("output.pdf"));

 // open the document

 document.open();

 // add a table to the document

 PdfPTable table = new PdfPTable(4);

 PdfPCell cell =

 new PdfPCell(

 new Paragraph("Employee Details for XYZ Organization"));

 cell.setColspan(4);

 cell.setBackgroundColor(Color.red);

 cell.setHorizontalAlignment(Element.ALIGN_CENTER);

 table.addCell(cell);

Development on ABAP and JAVA Stacks

 179

 //Set Header Text for the Table

 cell = new PdfPCell(new Paragraph("EMP NO"));

 cell.setBackgroundColor(Color.blue);

 table.addCell(cell);

 cell = new PdfPCell(new Paragraph("NAME"));

 cell.setBackgroundColor(Color.blue);

 table.addCell(cell);

 cell = new PdfPCell(new Paragraph("DEPARTMENT"));

 cell.setBackgroundColor(Color.blue);

 table.addCell(cell);

 cell = new PdfPCell(new Paragraph("DESIGNATION"));

 cell.setBackgroundColor(Color.blue);

 table.addCell(cell);

 //Fill data to the table

 String inputArray[] = input.split("END");

 for (int i = 0; i < inputArray.length; i++) {

 String fieldValuesArray[] = inputArray[i].split(",");

 for (int j = 0; j < fieldValuesArray.length; j++) {

 table.addCell(fieldValuesArray[j].toString());

Chapter 4

180

 }

 }

 document.add(table);

 } catch (DocumentException de) {

 System.err.println(de.getMessage());

 } catch (IOException ioe) {

 System.err.println(ioe.getMessage());

 }

 // close the document

 document.close();

_

 }

}

This is what the final output will look like (Figure 113):

Figure 113

Note: When coding for the module, write out to an Outputstream rather

than a FileOutputStream

